Dual Free SDCA for Empirical Risk Minimization with Adaptive Probabilities
نویسندگان
چکیده
In this paper we develop dual free SDCA with adaptive probabilities for regularized empirical risk minimization. This extends recent work of Shai Shalev-Shwartz [SDCA without Duality, arXiv:1502.06177] to allow non-uniform selection of ”dual” coordinate in SDCA. Moreover, the probability can change over time, making it more efficient than uniform selection. Our work focuses on generating adaptive probabilities through iterative process, preferring to choose coordinate with highest potential to decrease sub-optimality. We also propose a practical variant Algorithm adfSDCA+ which is more aggressive. The work is concluded with multiple experiments which shows efficiency of proposed algorithms.
منابع مشابه
Dual Free Adaptive Mini-batch SDCA for Empirical Risk Minimization
In this paper we develop dual free mini-batch SDCA with adaptive probabilities for regularized empirical risk minimization. This work is motivated by recent work of Shai ShalevShwartz on dual free SDCA method, however, we allow a non-uniform selection of ”dual” coordinates in SDCA. Moreover, the probability can change over time, making it more efficient than fix uniform or non-uniform selection...
متن کاملStochastic Dual Coordinate Ascent with Adaptive Probabilities
This paper introduces AdaSDCA: an adaptive variant of stochastic dual coordinate ascent (SDCA) for solving the regularized empirical risk minimization problems. Our modification consists in allowing the method adaptively change the probability distribution over the dual variables throughout the iterative process. AdaSDCA achieves provably better complexity bound than SDCA with the best fixed pr...
متن کاملPrimal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
In this work we develop a new algorithm for regularized empirical risk minimization. Our method extends recent techniques of Shalev-Shwartz [02/2015], which enable a dual-free analysis of SDCA, to arbitrary mini-batching schemes. Moreover, our method is able to better utilize the information in the data defining the ERM problem. For convex loss functions, our complexity results match those of Q...
متن کاملAn Accelerated Proximal Coordinate Gradient Method
We develop an accelerated randomized proximal coordinate gradient (APCG) method, for solving a broad class of composite convex optimization problems. In particular, our method achieves faster linear convergence rates for minimizing strongly convex functions than existing randomized proximal coordinate gradient methods. We show how to apply the APCG method to solve the dual of the regularized em...
متن کاملDistributed Asynchronous Dual-Free Stochastic Dual Coordinate Ascent
In this paper, we propose a new Distributed Asynchronous Dual-Free Coordinate Ascent method (dis-dfSDCA), and prove that it has linear convergence rate in convex case. Stochastic Dual Coordinate Ascent (SDCA) is a popular method in solving regularized convex loss minimization problems. Dual-Free Stochastic Dual Coordinate Ascent (dfSDCA) method is a variation of SDCA, and can be applied to a mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.06684 شماره
صفحات -
تاریخ انتشار 2015